Mixed-model coexpression: calculating gene coexpression while accounting for expression heterogeneity
نویسندگان
چکیده
MOTIVATION The analysis of gene coexpression is at the core of many types of genetic analysis. The coexpression between two genes can be calculated by using a traditional Pearson's correlation coefficient. However, unobserved confounding effects may cause inflation of the Pearson's correlation so that uncorrelated genes appear correlated. Many general methods have been suggested, which aim to remove the effects of confounding from gene expression data. However, the residual confounding which is not accounted for by these generic correction procedures has the potential to induce correlation between genes. Therefore, a method that specifically aims to calculate gene coexpression between gene expression arrays, while accounting for confounding effects, is desirable. RESULTS In this article, we present a statistical model for calculating gene coexpression called mixed model coexpression (MMC), which models coexpression within a mixed model framework. Confounding effects are expected to be encoded in the matrix representing the correlation between arrays, the inter-sample correlation matrix. By conditioning on the information in the inter-sample correlation matrix, MMC is able to produce gene coexpressions that are not influenced by global confounding effects and thus significantly reduce the number of spurious coexpressions observed. We applied MMC to both human and yeast datasets and show it is better able to effectively prioritize strong coexpressions when compared to a traditional Pearson's correlation and a Pearson's correlation applied to data corrected with surrogate variable analysis (SVA). AVAILABILITY The method is implemented in the R programming language and may be found at http://genetics.cs.ucla.edu/mmc. CONTACT [email protected]; [email protected].
منابع مشابه
Gene coexpression network analysis for family studies based on a meta-analytic approach
For a better understanding of the biological mechanisms involved in complex traits or diseases, networks are often useful tools in genetic studies: coexpression networks based on pairwise correlations between genes are commonly used. In case of a family-based design, it can be problematic when there is a large between-family variation in expression levels. We propose here a gene coexpression ne...
متن کاملMulti-dimensional correlations for gene coexpression and application to the large-scale data of Arabidopsis
BACKGROUND Recent improvements in DNA microarray techniques have made a large variety of gene expression data available in public databases. This data can be used to evaluate the strength of gene coexpression by calculating the correlation of expression patterns among different genes between many experiments. However, gene expression levels differ significantly across various tissues in higher ...
متن کاملCoexpression of linked genes in Mammalian genomes is generally disadvantageous.
Similarity in gene expression pattern between closely linked genes is known in several eukaryotes. Two models have been proposed to explain the presence of such coexpression patterns. The adaptive model assumes that coexpression is advantageous and is established by relocation of initially unlinked but coexpressed genes, whereas the neutral model asserts that coexpression is a type of leaky exp...
متن کاملRank of Correlation Coefficient as a Comparable Measure for Biological Significance of Gene Coexpression
Information regarding gene coexpression is useful to predict gene function. Several databases have been constructed for gene coexpression in model organisms based on a large amount of publicly available gene expression data measured by GeneChip platforms. In these databases, Pearson's correlation coefficients (PCCs) of gene expression patterns are widely used as a measure of gene coexpression. ...
متن کاملSubspace Differential Coexpression Analysis: Problem Definition and a General Approach
In this paper, we study methods to identify differential coexpression patterns in case-control gene expression data. A differential coexpression pattern consists of a set of genes that have substantially different levels of coherence of their expression profiles across the two sample-classes, i.e., highly coherent in one class, but not in the other. Biologically, a differential coexpression pat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 27 شماره
صفحات -
تاریخ انتشار 2011